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ABSTRACT

\JThe extreme point characterization of the (£')-ball of a generalized

finite sequence space by Kortanek and Strojwas was accomplished only for real
’2'\' Tid " "_’
scalars and by continuity considerations. We showg@hat no topology or contin-

uity is needed as in Kortanek-Strojwas and that the characterization extends

to weighted (£')-balls with any ordered scalar field. We show é Chebyshev
Shown fo be © has N
ball theorem is,false since they have np extreme points. Via generalizing the
SLoree. Irg- endénct  UL%h S e Povrr;-)_k‘?\
LIEPAtheorem, useful projections of the ball are proved convex hulls of their

extreme points.
A
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THE EXTREME POINT CHARACTERIZATIONS OF SEMI-INFINITE

DUAL NON-ARCHIMEDEAN BALLS
A. Charnes and T. Song
The University of Texas at Austin

1. Introduction

In 1951 Charnes introduced non-Archimedean field extensions into linear
programming as part of his non-Archimedean Simplex method [1] which solved
the degeneracy problem and thereby provided the first rigorous algorithm
for solution of linear programming problems. Together with his LIEP Theorem
and Opposite Sign Theorem it could be used to extend the major theorems of
LP to vector spaces with scalars from any ordered field (e.g. [2] and [3])
without thereby requiring topological considerations as used in separation
theorems for convex sets. Although the LIEP Theorem and Opposite Sign
Theorem were extended to semi-infinite programming duals in [4], Xortanek
and Strojwas in [5] succeeded only in the important case of the real field
and by means of continuity considerations to characterize in a similar fashion
the extreme points of dual constraints sets additionally constrained to
lie in a (non-1inear) "(2')-ball" of the generalized finite sequence space.

In this paper we show that no topological or continuity considerations
are needed and that the Kortanek-Strojwas characterization holds for the
extension to weighted (%')-balls with vector entries from any ordered field.
We also prove that the similar theorem for "Chebyshev-balls" is false. In
fact the Chebyshev-balls have no extreme points. Via a generalization of the
LIEP Theorem of semi-infinite programming, we obtain aé corollaries character-

ization of useful subsets of the Chebyshev ball as convex hulls of their

extreme points.
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First we define the following sets

(1) Aé{xeF(I):;PiAi=Q,x>0}

(2) Kg{xep(l);gpixi=o,A>0,Zi:>‘1.<u}

(3) A AR e -, Thyl<u}
1 1

(4) e er D Teg -, Al U, Tel}
1

where F is any ordered field; Pi's, Q are m-vector from Fm; I is an index
set; zmeans the summation is over all non-zero components of A. F(I) is the
genera}ized finite sequence space of vectors on F with |I| entries, alternately
it is the space of functions from I to F with finitely many non-zero entries.
In the following section, we will show that sets R . K are all the
convex hull of their extreme points and we will also discuss some properties

of their extreme points. The fundamental theorems of this paper are the

LIEP Theorem and 0S Theorem:

Theorem 1.1 (Linear Independence with Extreme Points)

Assume A of (1) is non-empty. Then A\# 0 is an extreme point of A if

and only if { Py | el } is linearly independent.

Theorem 1.2 (Opposite Sign Theorem)

Assume A is non-empty. Then the set of extreme points of A is non-
empty and A is the convex hull of its extreme points if and only if

{ Pi | 1€l } has the Opposite Sign Property, (OSP) namely, A € F(I),

A#0 and :z:PiAi = 0 imply that some Ar and AS are of opposite sign.
i
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o 2. The set A
Consider >
N . I) . 0 i)
(5) s tos)er x P ax(d) s in(l ) = (Y .20, 30

~ i
For any A€A , let

* A* = U -Z)\i
1

This defines the following mapping:

@ : A—> A"
: where @ (1) = (A%,1) = (U - Do A, 4 A) i
- i
- Evidently this mapping is 1-1 and of the first degree in A.

Take A', A2€A and 0 <6< 1. Since
U= (200000 + (1= 02)) = 8(U - 20ad) + (1 - 8)(u - 2000
i i i

we have

@At + (1 - 8)A%) = 8@(A) + (1 - 8)w()?)

Conversely,

o loo() + T8 0(1?)) = Flio(ert + T- 62%)] = aa* + (1 - 8)A2

The following Lemmas are true.
Lemtma 2.1

}1 X is an extreme point of A if and only if @(X) is an extreme point of A".

Lemma 2.2
K is the convex hull of its extreme points if and only if A" is the convex

hull of its extreme points.

Theorem 2.1

If A is non-empty, then A is the convex hull of its extreme points.
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because A # ¢, by Theorem 1.2 A" is the convex hull of its extreme points.

Proof: Since has the opposite sign property and A" # ¢

In accordance with Lemma 2.2, then R js the convex hull of its extreme

points.
Q.E.D.

Theorem 2.2
Suppose A is an extreme point of A and A # 0.
(i) If :E:Ai = U, then {Pi DAy > 0} is affinely independent.
i
i

(i1) If :E:Ai < U, then {Pi : X; > 0} is linearly independent.
i

Proof: Suppose XA is an extreme point of A. By Lemma 2.1 @()) is an extreme

point of R".
(1) 1F 2o, = U, then A% = U - D, = 0,
i

By Theorem 1.1,
(5)
1/ : A > 0 is linearly independent,

{Pi : A; >0} is affinely independent.
(ii) If Z)‘i < U, then x* = U - in > 0.
i i

By Theorem 1.1,

P.
) (3
} (1) s \1 Py > 0 } is linearly independent.

Hence the set

P
j
(0 ) : Ai > 0‘ is linearly independent and {Pi : Xi > 0} is

linearly independent.

Q.E.D.
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3. The set R
Below we will first discuss the more general set Xw as follows:
(6) A, 8 veF®D Z‘HM Q, Ew A1 <)
where w. > 0, for all i€l , is called the'"weight' of component i and

1

;1 & max(x; 5, -25).

Lemma 3.1

The function g(p) A Ew1.|>\1. + pai[ R
i

where (1) Wy > 0, Viel, (ii) {iel ol # 0, or Ai # 0} is finite and
oy # 0 for some i, is a non-negative piecewise linear function of p > 0, which
takes on all values in F between any two values of g(p) and takes on arbitrarily

large positive values in F.

Proof: |

Let J

I,A{i: A =0, q f0} |

Tood {114, #0, 05 =0}

I.A{i: >‘i°‘i> 0}

Iqa {i: Aa; <0}
Thus IOL)IOOKJ Isk)Id is a partition of {i€1l : a # 0 or Ai # 0}.

Then

g(p)

;I + ouy|

1

}E: wo x| + p}E: w.la.| + :E: (Ix;] + plas]) +
1 1 'iEIo 1 1 1.€IS 1 1

i 6100
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+ Z wi(l)‘i' - plai!) + Z wi(plo‘il - l)‘il)

]€Id 1€Id
p < l)\il / ‘0‘-;| p > |>‘i| / |°‘,-|
A | s | Il
Let ' 11 i, n
< <€...¢8
[ailT Ta,-zl lainl

where {i1...-,in} = Id. We designate these ratios as PSS,

Thereby we obtain the following expressions for g(p).

For
DOQ0<p<plz
g(p) = Z wila |+ O{E W log 'Zwilail}
IooUIsUId IJ‘)IS Id
For
Pp < P < 0pyg
o) = Dowhl - D5 Wiyl
Io%Jng{1k+1,...,1m} {11,...,1k}
*p{ 2 _wiley -2 "‘il-“i!}
Iok)IskJ{11""’1k} {1k+1""’1n}
for k =1,2,...,n-1.
For
£ 2> P
g(e) = Z wilsl 'Z‘”i“i' + Z W, fos |

\ j
I03""15 Id Iok’ISUId
Evidently g(p) is linear in each interval o S o< Pis (=0,1,...,n-1)

and o 2 fn with increasing coefficient of o as o increases. I.e.,




tk + SKP e Py <€p < Prs1  * k =0,..., n-1

glp) =
t,tse o PP

het <SS, < ... = =S = :E: oL >
whete s <, < S, 1=S5; S, w.la | > 0 and

+ s

9(opp1) =ty * Ska1 Pra1 T Bt Sk Prer

Let r be the least integer for which S, > 0.
Then g(p,) = g(py) =... = glp,) and glp) = glp 1) = ... =g(p), i.e.

g(pr) is the minimum of g(p) for p=0. Forany t € F, t Zg(pr), either

g(p) =t =glp,q) for some k =r, or else t = g(p,). Thus, glp) = t for

either p = (t + tk)/sk or else for p = (t - tn)/sn.
Q.E.D.

From this Temma, it is easy to obtain the following theorem.

Theorem 3.1
Suppose A has at least two points. If X € A and :E: wl!x | < U, then
A is a convex combination of Al, A% € A with }E: W |A | = U :E:w IA

Proof:

Suppose \' € Aw and X' # A,

leta=x-Xx"#0, ga(o) = }E: W, IAi + pail.
i

By Lemma 3.1, there exists p, > 0, such that g (p;) = U > g (0).
Set

A=A+ pla

Sincezp.)\'.=zp.()\,+p a.)z
r it i i i 3 17

2Py Gy rey Gy s = Qe e @0 -

...............

.......................................................

.........




and

Zwill'il = galpy) = U,

therefore

A € Aw

Similarly, there exists Po >0 such that

g_,(p,) = ;1-: wilAs + o, (=0,) | = U

24 - N
NOW X = l + 02 (-Q.) - A - 920. Axw
p p
Thus , 2 L 1
Pt P L * P

Q.E.D.

Consider the following set

(7) N et e SOIHEDY Pt + 2. (-P) A7 = QT = 0
i i

21_: wi>‘1+ + 21 w1'>‘1'- =Y }

where w, > 0, wi € I.

i
P, -P,
(wl) ’ ( w1) : i€l
i i

Hence, A;' is the convex hull of its extreme points. Furthermore, we have

Clearly, has the opposite sign property.

the following:

SR
F;:; Lemma 3.2
L 1f (A*, A7) is an extreme point of A;' , and A: A; = 0 holds for all i €1,

then » = At - A” is an extreme point of Kw.

U S S -21':5‘
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M Proof:

Since .7 A, =0and A, =0, X\,”=0
i N i i

(8) ol = 2w A D w AT =
: i
1

i

. _ + _ _
Also 3~ Py = 3 Py ¢ S PN =0
i i i
Thus, X € A, if there are xl, AZ € Aw such that
A =86r + (T-8) AZ, where 1 > 6 > 0.

‘i If there exists an io such that sgnki' # sgnxiz, then
X 0 0
T A 1= [exi1 + (1-8) x§| < 8 |xil| + (1-8) lxizl
o ) 0 0 ) 0

Therefore

1 2
Dowdngl <o Do w4 (18) Do w =
i i i

This is a contradiction to (8), so

1 _ 2
sgn Ai = sgn Xi

and

1 2,
PIRNISR RN DAL
1‘ 1'

For k = 1,2, set

. P
. LG b if 2., =0
! 0 otherwise
PR
k- _ ) -n.K if A%< 0
)\1- = 1 1
0 otherwise
k';' e - PO . " . ) -~ ~ - 2 - - - - - L . . -, - .
o T T e N e e DT L DI




Hence (a7 = e, 1) + (1-0) (0%, 20)

with Ok, Ak e AT, kL2

Recalling (A+, A~) is an extreme point of A;“, there must hold
(x*,x') - (A1+, >\1-) - (A2+,A2').

Thereby A=A = Q.E.D.

Theorem 3.2

Every A € A, with :E: w1|xi| = U is a convex combination of extreme
i

points of Aw.

Proof:

Let A+,A' € F(I) such that

X %xi A; >0
0 otherwise
0 otherwise

. N . + - + -
Since X\ € Aw with :E: wilxil =Uand A =X -Xx, (A, 7)€

1

+-
w

If (A+,A') is not an extreme point of A;' , then it is the convex combination

+-
w ]

a0 = Xe, KTk
k

of extreme points of A i.e.




2 +k .- +k . A-k)

T k :
Because 0 = xi Ay Zzek A Ay = 0 these extreme points (A ~ , must
k
have the property that
+k . .-k
.ok _ .tk -k . ~
By lemma 3.2, they correspond via A" =X = - A ~ to extreme points of A, and

A= 0y Ak
k

Q.E.D.

From theorem 3.1 and 3.2, the following corollary holds.

Corollary: Kw is the convex hull of its extreme points.
Since A is a special case of Aw’ A is also the convex hull of its extreme
points. Furthermore, we have the following theorem that gives characteristic

properties of the extreme points of X.

Theorem 3.3
If K has at least two points and ) € K , then ) is an extreme point of X

if and only if
LD DN INER
i

i) {p. a5 0f u f-p,

St < o} is affinely independent.

Proof:

Suppose that X is an extreme point of A. By theorem 3.1 :E: |Ai| = U.
i

v A, A. > 0
Let A: = L L
0 otherwise
! 0 otherwise




Thus (AN, A )en
where S( , A7) € F(I) ZP A:.' + Z('Pi) A; =0Q, A‘; s x;z 0
~ i
At o=
+ -
? PRI I
1 i

It is easy to verify that (A+ , A ) must be an extreme point of At By

theorem 1.1, the LIEP theorem,
- Pi + { 'Pi -
F 1 : )\1. >0 ¢ U 1 : )\1. >0
i is linearly independent. In other words,

is affinely independent.

Suppose that (i), (ii) hold for some A € A. By the same transformation,
we have

A=At -aT

with (0", A7) e ™ and 27 A;=0, V.

By the LIEP theorem a1so,'(k+, X") is an extreme point of K+' Finally,
the lemma 3.2 ensures that ) is an extreme point of A.

Q.E.D.
N e A N e e e e e e T e

12




4. The set A°
If I is an infinite index set, it is interesting to see following results.

Theorem 4.1
If I has an infinite number of elements, then Ac has no extreme point at

all.

Proof: We only need to show that for any A.EAF, there exist A, )% € AC,
A # A such that
1 2

A= A+ 42

Since {i €l : A # 0} only has a finite number of elements, we can

select 11""’1m+1€ I, such that

Upaeensip PN €L A £ 0) = ¢

Because Pi ,...,Pim+1 € F" , there exist GpsevesOpyq DOt all zero, such

that
. m+1
N z Pikak = 0
ﬁ. k=1
?
i._' Let
L. 0 = min {U/lakl . Clk f 0}
\;
e ,
F . Ai if A]. £0
. 1 s _ s -
$. Ai = eak if i L k=1,...,mtl ,
E: 0 otherwise.
-
Ei A if A #0
5 A% = §-60y ifi=d ,k=1,...,ml,
’.
ﬁ 0 otherwise.
y
d

W e e el e eTh e o PR P . . .
d LR . L R ', e o, - . A YL . - Cat et . Seta™ . ~ .. LI ) - T W . . -
A T T PR e AT AR AT REAZ AN o S . J

AR ety .
L) N e LYY CEELY
LA ST O S e W) SOOI NN
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It is easy to verify that

A, azep®
Clearly A! # A2 and

A=A+ a2
Q.E.D.

The basis for this contrast with the "(21)" results is that the latter
involves only a finite number of additional constraints, whereas the Chebychev
bounds involve the whole infinite cardinality of bounds corresponding to the
totality of coordinates. However, every point in 1€ has only a finite number
of non-zero coordinates. And, for the projection of I onto the finite-
dimensional subspace corresponding to these, we do have extreme point theorems
of similar nature to the (Ql) ball results as we now show.

We will now develop a generalization of the semi-infinite LIEP Theorem
which perhaps shows why A® has no extreme points at all. Actually Theorem 4.1
can be regarded as a corollary of the following Theorem 4.2.

Define the set
(9) A A {AGF(I) : ZPi"i =Q, 2 =) =y, Vi)
i
where 21. =u; .
Note that since AGF(I) » A' = ¢ unless Ly = 0, Vi€el,

Theorem 4.2

A €N # ¢ is an extreme point of A' if and only if {Pi PRy <Ay < Ug)

is linearly independent.

Proof: "if": Suppose {Pi Py <Ay < ui} is linearly independent and

(10) A= 8at+ (1 - 9)a?

where 0 <96 <1, A*, AZen',

.....................................

T TS e Pt N L WAL FUL ST A A P : e T e e et e e e
W h’-&{i‘;\‘:&h{ M‘ﬁ Aii\.\-\ e '_‘}“r_‘"_‘"_.‘:.“..?:l}.l CFSL AL I TR I 1P ',-',\.AL‘\:A lalata’
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fﬁ Let
.
[ Ilé{1€1 :Ai= %}
2 IAGED D Ay = u,l
N Ioog{1€I:Qi<>\i<ui}
" bl
i Clearly, from (10), we have
N
2 i€l Al =22 =y
N L i i i
: 1 = 32 =
. 1€Iu=>)‘i Ay = Uy
. Thus,
[~ Z PA, = Q- E P2 - E Pu; = Z PA} = E PAd
e : . : .
" i Ioo i€l i €Iu i eIoo i eloo
Y
N But since {Pi | 6100} is linearly independent, the representation is unique.
. Hence
. - 1 - 2
- >‘i )\i }"i
é ie., A=Al =32 and X is an extreme point.

"only if": Suppose {Pi R | 6100} is Tinearly dependent, i.e.,

2 P =0

h i
16100
‘*l
- with not all Als.ee 50, 2€TO.
b,
N Take ¢ > 0 small enough so that
- ) .+ eq. . i
T 21 < A1 €ay < U, Yi €Ioo
Let
) A: tea; o T€1
2 ?\%,é. i i 00
N A4 » Otherwise
\
..

----------------------------------------------------

AP RIS AL ST - R T T e e SRt
T o e el T e T T Tt T e s
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, otherwise
Evidently, A, A2 € A A# A% and

A= A+ 42

Q.E.D.

Since A¢ is a special case of A' with u; = v, 2 = -U, and Ac is in

a generalized finite sequence space,

o - V€l -uy <y < U} D {iel : x;, =0}

IO 1

has an infinite number of elements. Thus {Pi | GIOO} must be Tinearly

dependent for any A.eAc. By Theorem 4.2, there is no extreme point in AC.

However if all 21 =0, A' is the convex hull of its extreme points and

we have the following Theorem 4.3,

First for simpler discourse, we shall call

0 ° {i€el : 0 < Ai <u,}

IO 1

the "active index set" from now on.

Theorem 4.3: A' is the convex hull of its extreme points, if all li = 0.

Proof: Take any xeA'. If A is not an extreme point of p', by Theorem 4.2,

{Pi :

zero such that

%
€
i Ioo
Let
1t = i€l >0
00 oo - & }
- e
I, = (i€l o, <0}
T S0 R RN S VL N N N LN e

i 6100} is Tinearly dependent. Thus, there exist ajs i Eloo not all

. .~.\.\.'-.~.v.‘-.‘-.d
PR D Nl R Y
St '_.*_l\_l\_l\jg';l\_j “a



U_i~)\ + )\ -
pP1 = min {—0.— ;1€IOO;W’1€IOO}

. it I S .-
P2 = mn {01’16100’—W’16100}
Because I;okJ 180 # ¢ , p1 and p, are well defined. Now let
ot -
. A ’]“oouloo
.4 -
Xi t oy s €IooUIoo

R -
Aj = pooy » T UT

Af A
Ai » otherwise
< It is easy to see that
’
Al, AZEA' ,)\I#AZ,
=__.Q2_1+_QZ___2
A O1+Dz)\ D1+Dz>\
; and the active index set of Ak (k = 1,2) has at least one less element than
: the active index set of A. If A! and A? are both extreme points of A', we
are done. Otherwise using the same method, we can present xk as a convex
combination of two other points of A' which have at least one less element
; of the active index set than the Ak‘s. Therefore in at most 2" steps (where
N n is the number of elements of Ioo) we can get ) as a convex combination of

extreme points of A'.

Q.E.D.

17
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